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ABSTRACT 

The Río Mayer Formation (Lower Cretaceous) of the Austral Basin, Patagonia, is a key 

source rock for unconventional reservoirs. This study explores the potential of machine 

learning (ML) for predicting Total Organic Carbon (TOC) content using outcrop data, a 

novel approach compared to traditional subsurface data applications. Employing 

dimensional reduction techniques (PCA, T-SNE, UMAP), the analysis revealed clear 

clustering of high TOC values in feature space, supporting the feasibility of predictive 

modeling. Three ML models—Logistic Regression, Support Vector Classifier (SVC), and K-

Nearest Neighbors (KNN)—were tested using a feature set derived from ANOVA F-Score 

rankings. Dimensionality reduction improved model performance, with SVC achieving the 

most robust results. Despite limited labeled samples, predictions across models were 

consistent, identifying a promising region for high TOC. The study highlights the 

importance of integrating geological variables and XRD data in TOC modeling and 

emphasizes the need for expanded datasets and additional sedimentary sections to 

enhance regional interpretations. 

Keywords: Unconventional reservoirs, Machine learning, TOC prediction, Austral Basin, 

Dimensional reduction 
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INTRODUCTION 

In recent years, the use of machine learning methods to analyze, model, and predict 

various aspects of oil-bearing rocks has increased. These methods have been used to 

predict Total Organic Carbon (TOC; Handhal et al., 2020; Saporetti et al., 2022), 

distribution of facies associations (Tognoli et al., 2024), rock brittleness (Guo et al., 2022; 

Mustafa et al., 2022; Ore and Gao, 2023), hydrocarbon production predictions (Prochnow 

et al., 2022), and for reservoir characterization (Niu et al., 2022). These studies are based 

on subsurface data, using cores, cuttings, or petrophysical (wireline) data. Given the 

importance of analog outcrop data for petroleum system characterization (Busch et al., 

2022), generating machine learning models from outcrop data is highly significant. 

However, scientific studies that integrate field and subsurface data using machine learning 

methods remain scarce (Milad et al., 2020). The TOC values represent the amount of 

organic carbon preserved in a rock sample, and are often used to estimate the type of 

hydrocarbon produced and/or retained, and it defines the possibility of that rock to be a 

source rock for hydrocarbons (more than 1%) (Passey et al., 1990; Handhal et al., 2020; 

Saporetti et al., 2022). 

The Austral Basin is the southernmost oil-producing basin in Argentina (Fig. 1). Initially, 

oil production came from conventional reservoirs. However, in the last decade the basin 

has been intensely explored for unconventional reservoirs (e.g. Belotti et al., 2013; 2014). 

The Río Mayer Formation (=Palermo Aike Formation in subsurface) constitutes the main 

exploration target for unconventional reservoirs in the basin (Rojas et al., 2022; Melendo 

et al., 2023, and references therein). This unit is primarily composed of black shales, with 

thinly interbedded marls and sandstones (e.g., Richiano et al., 2012). Unconventional shale 

reservoirs must possess various characteristics, but foremost are high TOC, rock 

brittleness, significant stratigraphic thickness, and broad areal distribution. The analysis of 

TOC is critical in oil-exploration, and efforts have been made to measure it at lower costs 

and in less time-consuming ways (e.g., Handhal et al., 2020; Saporetti et al., 2022). 

In this paper, machine learning methods are applied for the first time on the Río Mayer 

Formation, a shale target for non-conventional reservoirs. In addition, this work is one of 
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the few available models based on outcrop data. In the next sections we describe the unit 

and the data previously published, then we describe the methods applied and run the 

database to finally model the TOC prediction. Taking the above into consideration, the 

objectives of this contribution are: (1) to use machine learning to model the distribution of 

sedimentological features (observed in the field), the mineralogical composition, and the 

TOC from selected samples; (2) to develop a workflow for predicting TOC values in 

samples where measurements are missing; and (3) to assess the accuracy of different 

mathematical models applied in this case study. 

 

GEOLOGICAL SETTING 

The Austral-Magallanes Basin (Jurassic to Cenozoic) is located in the southernmost part 

of Patagonia, Argentina (Cuitiño et al., 2019) (Fig. 1). The basin was initiated by Late 

Jurassic extension associated with the El Quemado Complex (equivalent to the Tobífera 

Formation) syn-rift sequence (Féraud et al., 1999; Pankhurst et al., 2000). During 

subsequent transgression, the continental to shallow marine Springhill Formation 

(Tithonian to Berriasian) was deposited (Kraemer and Riccardi, 1997; Richiano et al., 

2016). During the Berriasian, the transgression continued, leading to the deposition of the 

Río Mayer Formation, marking the onset of post-rift (sag) conditions (Arbe, 2002). This 

unit mainly comprises black shales with fossiliferous levels indicating Berriasian-Albian 

deposition (i.e., Kraemer and Riccardi, 1997; Aguirre Urreta, 2002). The outcrops of the Río 

Mayer Formation are covered transitionally from north to south by the Piedra Clavada 

(=Kachaike), Lago Viedma and Cerro Toro formations during the Aptian/Albian (Richiano 

et al., 2012; Cuitiño et al., 2019). 

At the Seccional Río Guanaco locality (Fig. 1) the Río Mayer Formation is ca. 400 m thick 

and was previously subdivided into three informal sections (Richiano et al., 2012). The 

lower section is dominated by laminated black shales interbedded with marls, with 

abundant ammonites and belemnites, interpreted as deposited in an outer shelf setting 

(Richiano et al., 2012). This section has the highest TOC content of the Río Mayer 
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Formation, ranging between 0.07 and 2.81% (Richiano, 2014). The middle section is 40 m 

thick and it is composed of intensely bioturbated dark marls and shales, characterized by 

trace fossils of the Zoophycos Ichnofacies (Richiano et al., 2013; Richiano, 2015). The TOC 

in the middle part of the section is very low (< 0.58%; Richiano, 2014). The upper section 

is composed of massive black shales intercalated with very fine- to fine-grained sandstones, 

interpreted as an outer shelf with distal low-density turbidity current deposits (Richiano et 

al., 2012). In this section, the Zoophycos Ichnofacies was also reported (Richiano et al., 

2013; Richiano, 2015). This section shows moderate TOC values at the base (0.5-2 %, 

average 1.12 %) and extremely low values towards the top. The frequent intercalation of 

sandstones in the uppermost part of the section is related to the distal influence of the 

deltaic deposition whose lithologic expression at the basin margins is the Piedra Clavada 

Formation to the north (Richiano et al., 2012; 2015).  

 

 

Figure 1. Location of the study area. a) General map of the Austral Basin in southern Patagonia. b) Position of 

the Seccional Río Guanaco (PN) of the Los Glaciares National Park, related stratigraphy and sedimentary 

sections used (full information at Richiano et al., 2012, 2015, 2019). Modified from Richiano et al. (2019).  

 

 



Richiano and Ares, in press. Latin American Journal of Sedimentology and Basin Analysis 
 

 

DATABASE AND METHODS 

Sedimentary sections and samples analyzed 

Three sedimentary sections of the Lower Cretaceous Río Mayer Formation were selected 

for sedimentological, mineralogical and geochemical analyses (Sections IG, PG, PA; Fig. 2). 

A total of 106 fine-grained rock samples from Río Mayer Formation were collected and 

analyzed (Fig. 2). The initial step involved converting the outcrop data into numerical 

values. In this sense, three “field parameters” were assigned to each sample. First, following 

the methodology used by Poiré et al. (2007), numerical values were assigned to 

sedimentary facies, wherein different values characterized the sedimentary texture and 

sedimentary structures (i.e., fabric). Secondly, different codes were applied to the 

sedimentary environments interpreted, using one (1) for outer shelf deposits and two (2) 

for outer shelf deposits influenced by deltaic environments. Finally, the last parameter is 

the bioturbation for which we use a binary discrimination between non-bioturbated (0) 

and bioturbated (1). The full sedimentary facies analysis, ichnology, and the compositional 

dataset used in this work are available in Richiano et al. (2012; 2013; 2015; 2019).  

The X-ray diffraction (XRD) characteristics of the samples were conducted on an X-

PANalytical model X´Pert PRO diffractometer located at the Centro de Investigaciones 

Geológicas (CONICET-UNLP, Argentina). The radiation source used was Cu/Ni, and the 

generation settings were set at 40 kV and 40 mA. For the whole-rock analysis, semi-

quantification was obtained from the intensity of the main peak for each mineral (Schultz, 

1964; Moore and Reynolds, 1997). Clay mineralogy was determined from diffraction 

patterns obtained using samples that were air-dried, ethylene glycol-solvated and heated 

to 550ºC for 2 h (Brown and Brindley, 1980).  
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Figure 2. Sedimentary logs of the Río Mayer Formation at the Seccional Río Guanaco locality (profiles IG, PG, 

PA located in figure 1). XRD: x-ray diffraction analysis; TOC: Total Organic Carbon. Modified from Richiano et 

al. (2019). 

Geochemical studies of the samples from the Río Mayer Formation include 17 samples 

analyzed for major, minor, trace elements, and rare earth elements (REE) by X-ray 

fluorescence spectrometry (XRF) and Inductively Coupled Plasma mass spectrometry (ICP-
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MS) measurements performed by ACTLABS (Ontario, Canada). In addition, 28 samples 

were assessed to determine trace element composition at Centro de Investigaciones 

Geológicas laboratories (CONICET-UNLP, Argentina). These samples were treated by 

dissolving the silicates in acid, and analyzed using a Perkin-Elmer ICP-MS fitted with a 

Meinhardt concentric nebulizer. Finally, 29 TOC values were obtained from within five 

lateral meters from the collected outcrop profile. TOC was ascertained by Geolab Sur S.A. 

(Buenos Aires, Argentina). 

The raw dataset consists of a total of 106 samples, including 103 samples with XRD 

analysis (103 whole rock and 101 of clay), 45 geochemical analyses and 29 samples of TOC 

(Table 1). 

  

Data Analysis 

Data analysis and modeling were performed using Python, primarily using commonly 

available libraries such as NumPy, pandas, matplotlib, seaborn, umap-learn, and scikit-

learn. The dataset's features were grouped into two categories: 'geo' for geological data (3 

features) and 'xrd' for X-ray diffraction data (10 features). Although X-ray fluorescence and 

ICP-MS data were included in the dataset, the sample size was too small for robust analysis. 

Missing XRD data were imputed using the population mean. 

Exploratory Data Analysis (EDA) was conducted to investigate the dataset, applying 

dimensionality reduction techniques like PCA, T-SNE, and UMAP to project the feature 

space into two dimensions. Feature scaling was consistently applied using the 

StandardScaler class from scikit-learn. This process enabled the identification of high and 

low TOC areas, which are needed for TOC modeling. Visualizations of both labeled and 

unlabeled data (with and without TOC measurements) provide insight to the geological 

variability within and across sections. 
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Sed. Fac. NF 1 2 Qz Pl FK Ca Py Arc I IS Cl K

PA-15 Pm 12 0 0 1 6 3 1 1 1 3 32 19 49 0

PA-14 Pm 12 0 0 1 6 3 1 3 1 3 35 16 49 0 0,09
PA-13 Pm 12 0 0 1 6 3 1 2 1 3 39 11 49 0
PA-11 Pm 12 0 0 1 6 3 1 3 1 3 30 15 55 0
PA-10 Pm 12 0 0 1 6 3 1 3 0 3 28 21 51 0
PA-9 Pm 12 0 0 1 6 4 1 3 0 3 38 14 48 0 0,09
PA-8 Pm 12 0 0 1 6 3 1 2 1 3 28 20 51 0
PA-6 Pm 12 0 0 1 6 3 1 2 1 3 29 30 41 0 0,09
PA-5 Pm 12 0 0 1 6 4 1 1 1 3 30 19 51 0
PA-3 Pm 12 0 0 1 6 4 1 1 1 4 36 5 59 0
PA-2 Pm 12 0 0 1 6 3 1 1 1 3 32 9 58 0 0,09
PA-1 Pm 12 0 0 1 6 3 1 1 1 3 30 24 46 0

PG 64 Pl 10 0 1 0 6 2 1 2 0 2 41 24 35 0
PG 60 Pl 10 0 1 0 6 3 1 4 0 3 34 21 45 0 1,48
PG 59 Pl 10 0 1 0 6 2 1 1 0 2 41 31 27 0
PG 55 Pm 12 0 1 0 6 3 1 2 0 3 39 23 38 0 0,6
PG 54 Pm 12 0 1 0 6 3 1 2 0 3 45 14 41 0
PG 52 Pm 12 0 1 0 6 2 2 2 0 3 26 34 40 0
PG 51 Pm 12 0 1 0 6 2 1 3 0 3 22 34 44 0
PG 50 Pm 12 0 1 0 6 1 1 4 0 3 24 40 36 0 1,81
PG 48 Pm 12 0 1 0 6 1 1 3 0 3 25 24 51 0
PG 45 Pm 12 0 1 0 6 3 1 1 0 2 34 13 52 0

PG 44 Gg 40 0 1 0 5 4 1 6 1 4 20 20 60 0

PG 43 Sm 30 0 1 0 4 5 1 5 0 3 56 0 44 0
PG 42 Pm 12 0 1 0 6 1 1 2 0 2 22 21 57 0 0,62
PG 41 Sl 33 0 1 0 5 5 1 2 1 4 66 2 32 0
PG 40 Pm 12 0 1 0 6 3 1 1 1 4 61 11 28 0
PG 39 Sl 33 0 1 0 4 5 1 3 1 4 85 0 15 0
PG 38 Mb 13 1 1 0 6 3 1 1 1 4 22 0 78 0
PG 37 Mb 13 1 1 0 6 4 1 1 0 4 71 0 29 0
PG 36 Mb 13 1 1 0 6 3 1 2 1 3 37 12 51 0
PG 35 Mb 13 1 1 0 6 3 1 3 0 3 38 23 39 0 0,58
PG 34 Mb 13 1 1 0 6 2 1 1 0 4 29 6 65 0
PG 32 Mb 13 1 1 0 6 4 1 4 1 3 22 27 51 0
PG 31 Mb 13 1 1 0 6 1 1 4 1 3 41 22 37 0
PG 30 Mb 13 1 1 0 5 2 1 6 1 3 20 37 43 0 0,09
PG 29 Mb 13 1 1 0 6 3 1 5 1 3 61 17 23 0
PG 28 Mb 13 1 1 0 6 1 1 5 0 2 36 27 35 2
PG 27 Mb 13 1 1 0 6 3 1 4 0 3
PG 26 Mb 13 1 1 0 6 1 1 5 0 3 33 30 36 0
PG 25 Mb 13 1 1 0 6 1 1 4 1 2
PG 24 Mb 13 1 1 0 6 3 1 4 0 3 66 18 16 0 0,17
PG 23 Mb 13 1 1 0 6 1 1 4 1 3 27 25 48 0
PG 22 Mb 13 1 1 0 6 2 1 5 0 3 65 15 20 0
PG 21 Mb 13 1 1 0 6 2 1 4 1 2 59 24 17 0
PG 20 Mb 13 1 1 0 6 1 1 4 1 2 57 27 16 0
PG 19 Mb 13 1 1 0 5 2 1 5 0 3 68 20 11 0 0,09
PG 18 Mb 13 1 1 0 6 1 1 5 1 2 43 47 9 1
PG 17 Mb 13 1 1 0 5 2 1 5 0 2 85 12 3 1
PG 16 Mb 13 1 1 0 6 2 1 4 1 2 64 23 13 0
PG 15 Mb 13 1 1 0 5 2 1 5 0 3 61 20 11 8 0,07

TOCSample Whole Rock Clays

X-Ray Diffraction

Bioturbation 
Index

EnvironmentLithology

Geological field data
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Table 1. Data set used for modeling. References: Facies: P: Mudstone; M: Marl; S: Sandstone; G: 
Conglomerate/Sabulite; C: Carbonatic; m: massive; l: laminated; b: bioturbated; g: glauconitic. NF: numerical 
facies. Environment: 1- outer shelf, 2- outer shelf influenced by deltas; XRD: x-ray diffraction; Qz: Quartz, Pl: 

PG 14 Mb 13 1 1 0 6 1 1 5 1 2 69 13 14 4
PG 13 Mb 13 1 1 0 6 3 1 4 1 2 61 26 10 4
PG 12 Mb 13 1 1 0 6 1 1 5 0 3 33 40 27 0
PG 11 Mb 13 1 1 0 6 2 1 5 0 2 72 13 13 2
PG 10 Mb 13 1 1 0 6 2 1 4 1 2 52 27 21 0
PG 9 Mb 13 1 1 0 6 2 1 5 1 2 51 29 10 10 0,09
PG 8 Mb 13 1 1 0 6 1 1 4 1 3 62 23 15 0
PG 7 Mb 13 1 1 0 6 1 1 5 1 3 37 34 19 10
PG 6 Mb 13 1 1 0 6 2 1 4 1 3 50 26 18 6
PG 5 Mb 13 1 1 0 6 2 1 5 0 2 71 19 11 0 0,13
PG 4 Mb 13 1 1 0 6 2 1 4 1 3 59 26 11 3
PG 3 Mb 13 1 1 0 6 1 1 4 1 3 26 40 34 0
PG 2 Mb 13 1 1 0 6 2 1 4 1 3 60 21 17 2
PG 1 Mb 13 1 1 0 6 1 1 5 1 3 39 37 18 5
BP 5 Pb 10 1 1 0 6 1 1 4 0 3 55 27 16 2 0,17
BP 4 Pb 10 1 1 0 6 2 1 3 0 3 40 32 28 0
BP 3 Sm 30 1 1 0 6 5 1 5 0 3 6 17 76 0
BP 2 Pb 10 1 1 0 6 3 1 4 0 3 26 29 41 4
BP 1 Pb 10 1 1 0 6 1 1 4 0 2 41 27 23 9 0,31

IG 44 Pl 10 0 1 0 6 2 1 1 0 3 37 40 20 3 1,49
IG 43 Pl 10 0 1 0 6 2 1 3 0 3 34 40 20 6
IG 42 Pl 10 0 1 0 6 2 1 2 1 2 41 35 20 4 1,59
IG 41 Pl 10 0 1 0 5 1 1 5 0 2 48 34 12 6
IG 40 Pl 10 0 1 0 6 1 1 4 0 2 34 44 15 7 2,44
IG 39 Pl 10 0 1 0 6 1 1 1 0 3 38 50 9 3 2,09

IG 37 - 38 Pl 10 0 1 0 6 2 1 5 0 3 46 37 16 0 1,88
IG 36 Pl 10 0 1 0 6 1 1 1 0 3 45 39 13 4

IG 34 - 35 Pl 10 0 1 0 6 2 1 4 0 3 36 51 13 0 1,65
IG 32 - 33 Pl 10 0 1 0 6 2 1 1 1 3 36 43 21 0
IG 30 - 31 Pl 10 0 1 0 6 2 1 3 0 2 35 44 18 3

IG 29 Pl 10 0 1 0 3 1 1 6 0 2 52 31 12 6
IG 27 - 28 Pl 10 0 1 0 6 2 1 2 0 3 40 39 17 4 1,56

IG 26 Pl 10 0 1 0 6 1 1 1 1 3 44 37 15 4
IG -24-25 Pl 10 0 1 0 6 2 1 3 1 3 29 40 21 10

IG 23 Mm 12 0 1 0 6 2 1 3 1 3 42 30 25 3 1,43
IG 22 Mm 12 0 1 0 6 2 1 3 0 3 41 37 20 2

IG 20 - 21 Pl 10 0 1 0 6 1 1 3 0 3 31 42 24 4
IG 18 - 19 Pl 10 0 1 0 6 1 1 3 0 3 50 32 17 2

IG 17 Pl 10 0 1 0 6 1 1 5 0 3 34 42 20 4 2,81

IG 16 Mm 12 0 1 0 4 1 1 6 1 2 38 30 21 11

IG14 - 15 Pl 10 0 1 0 6 1 1 1 0 3 46 36 16 2
IG 12 - 13 Pl 10 0 1 0 6 2 1 3 0 3 47 28 25 0 1,52

IG 10 - 11 Pl 10 0 1 0 6 2 1 3 0 3 64 23 11 3

IG 9 Pl 10 0 1 0 6 2 1 3 0 3 48 39 13 0 1,59
IG 8 Pl 10 0 1 0 6 2 1 3 0 3 59 26 15 0
IG 7 Pl 10 0 1 0 6 1 1 3 0 3 46 32 15 7
IG 6 Pl 10 0 1 0 6 1 1 3 0 3 57 28 15 0
IG 5 Pl 10 0 1 0 6 1 1 1 0 3 46 33 21 0
IG 4 Pl 10 0 1 0 6 1 1 1 1 3 60 19 21 0 0,07
IG 3 Cm 12 0 1 0 2 1 1 6 1 2 37 29 29 4
IG 2 Cm 12 0 1 0 2 2 1 6 1 2 77 18 3 2
IG 1 Cm 12 0 1 0 2 1 1 6 0 2 64 24 6 6
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Plagioclase; FK: K-feldespar; Ca: Calcite; Py: Pyrite; Arc: total clays; I: Illite; IS: Illite-Smectite; Cl: Chlorite; K: 
Kaolinite; TOC: Total Organic Carbon. 

 

Data Preprocessing 

Figure 3a illustrates the data preprocessing workflow. A threshold of >1 was applied to 

the measured TOC values to create a binary classification, with 1 indicating High TOC and 0 

indicating Low TOC. This threshold resulted in a nearly balanced dataset for training the 

classification model, removing the necessity for additional techniques (e.g., precision/recall 

metrics, over- or under-sampling) to address dataset imbalance. 

In order to address feature space dimensionality during TOC modeling (13 features for 

only 29 labeled samples), a feature selection process was implemented based on a feature 

importance metric. Several methods for computing feature importance were attempted 

(Random Forest, LinearSVC, Lasso and ANOVA). The quality of High/Low TOC separation 

in the feature space was evaluated using the silhouette coefficient (Rousseeuw, 1987). 

Feature selection was performed using an additive approach, prioritizing features in 

descending order of importance while monitoring changes in the silhouette score. The 

addition of features was halted upon observing a significant decline in the silhouette score. 

Feature ranking by ANOVA F-Score and the computed silhouette are shown, as well as 

the impact of feature selection on sample spatial distribution in reduced dimension (T-

SNE) in the results section.   

 

TOC Modeling  

The TOC modeling workflow is shown in figure 3b. A candidate model is fitted to a 

labeled dataset consisting of a set of selected features and their corresponding discretized 

High-TOC labels. In order to test the hypothesis (i.e. modeling of TOC is possible) we run 

three classification methods: Logistic Regression, Support Vector Classifier (SVC) and K-

Nearest Neighbours Classifier (KNN). These models have different working principles, one 
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is a parametric baseline model (Logistic regression), another is a state-of-the-art 

parametric model (SVC) and the last is a non- parametric method (k-NN). All of them are 

available in the scikit-learn library. 

Optimal hyperparameters for each model were determined using a combination of 

Bayesian Hyperparameter Search and Leave-One-Out (LOO) cross-validation, with the 

mean accuracy of the left-out sample in each split serving as the performance metric. This 

method ensured the selection of hyperparameters that maximize predictive accuracy on 

unseen data.  

Following hyperparameter selection, train/test accuracy plots were visually inspected to 

assess variance and bias, serving as indicators of potential overfitting or underfitting. The 

model was then retrained using the selected hyperparameters on all labeled samples and 

applied to predict the High-TOC content for both labeled and unlabeled samples. 

 

TOC Prediction 

The prediction workflow (Figure 3c) uses the full dataset, including both labeled and 

unlabeled samples, as input to the selected model and generates predictions for TOC 

values. These predictions can be either continuous (probability of High TOC) or discrete 

(High TOC probability > 0.5). Model predictions can be visualized in a reduced-

dimensional space (e.g., T-SNE) to identify regions in the feature space associated with a 

high probability of High TOC. 
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Figure 3. Modeling Workflow. a) Data Preprocessing Workflow. Continuous TOC values are thresholded to 

obtain a binary High TOC label. Using this categorical label, an additive feature selection process is performed 

by using ANOVA F-Score. Exploratory Data Analysis using dimensional reduction on feature space (all 

xrd+geo features). b) TOC Modeling Workflow. By using a labeled dataset, a candidate model is fitted. Model 

hyperparameters are adjusted by performing a Bayesian Search Optimization (BSO), and the model’s 

generalization performance is estimated with Leave-One-Out (LOO) cross validation. The model with best 

average test accuracy is selected and refitted on the full dataset. c) High TOC Prediction Workflow. Using the 

trained model, High TOC is predicted for all samples (labeled and unlabeled), identifying potential regions of 

interest in feature space. 

 

RESULTS 

This work focuses on the mathematical modeling of the data needed to predict TOC 

contents. In this sense, sedimentological, ichnological, environmental and/or compositional 

data can be found in Richiano et al. (2012; 2013; 2015; 2019). 
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Exploratory Data Analysis (EDA) 

Figure 4 presents the results of dimensionality reduction methods (PCA, T-SNE, UMAP). 

High TOC values cluster in a specific region corresponding to part of the PG section and 

nearly all labeled IG samples. In PCA space, the PG and IG sections significantly overlap, 

while PA is partially isolated with minor overlap with unlabeled PG samples. In T-SNE 

space, PA is distinctly isolated, and PG and IG show greater contrast. UMAP space reveals 

clear section contrasts: PA appears isolated in the lower left, while PG and IG show slight 

overlap in the lower right. 

 

 

Figure 4. Exploratory Data Analysis via Dimensional Reduction. Left: Principal Component Analysis (PCA). 

Center: T-distributed Stochastic Neighbor Embedding (T-SNE). Right: Uniform Manifold Approximation and 

Projection for Dimension Reduction (UMAP). TOC values are mapped in point sizes, while different colors are 

assigned to each section. High-TOC samples are consistently grouped in a region of space in all dimension 

reduction schemas. T-SNE provides the best results in visualizing both inter- and intra-section variability. 

 

Feature ranking and selection 

To reduce dimensionality before training the model, the most significant features were 

selected using ANOVA (Fig. 5a). Illite-Smectite abundance (xrd__arc_is) emerged as the 

most significant feature, followed by geological features: sedimentary facies 
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(geo__num_facies), bioturbation (geo__bioturb), and environment (geo__amb). The 

Silhouette coefficient remained consistently high but dropped sharply after the fifth feature 

(Chlorite; xrd__arc_cl), so only the top four features were retained. Other ranking methods, 

though not shown, also identified the first three features as highly significant. 

The spatial distribution of samples using all features versus the ANOVA-Silhouette 

selected features was compared in T-SNE reduced-dimensional space (Fig. 5b). In the 

feature selection scenario (right), high TOC samples clustered prominently in the upper left 

corner. 
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Figure 5. a) Feature importance (ANOVA F-score) and resulting Silhouette score after additive feature 

selection. The Silhouette score shows an abrupt decline after adding the fifth feature, indicating a potentially 

poor intra vs inter-cluster definition. b) Visualization of feature selection results in T-SNE reduced dimension. 

Left: Dimension reduction using all features (xrd+geo) as reference. Right: Dimension reduction of four most 

ANOVA F-Score relevant features (best_anova). Higher TOC values are considerably compacted in feature 

space, while being visibly isolated from samples with lower TOC content. 

 

Modeling  

Figures 6a and 6b show resulting mean accuracies of all trained models over train and 

test samples. Models trained on the full feature space (xrd+geo) show a greater tendency 

to overfit which is manifested as lower accuracies and a significant gap between train and 

test performance. While all models reported lower mean accuracies when trained in the 

full feature space, SVC appeared as the most robust model when working with higher 

dimensionality. When trained with a reduced feature set, the three proposed models 

showed improved performance. Logistic regression and SVC had a consistent test-train 

accuracy over 0.96, whereas KNN improved only slightly below this value and exhibited 

some overfitting behavior.  

 

DISCUSSION 

The analysis of the distribution of TOC content in shale targets is a crucial objective 

needed for the exploration and development of unconventional shale reservoirs. While 

detailed studies on the outcrops of the main source rock in southern Patagonia have been 

published in the past decade (e.g., Richiano et al., 2019 and references therein), this study 

represents the first application of mathematical modeling to test the potential of machine 

learning as a predictive method for TOC. Given the unbalanced dataset, only outcrop data 

and XRD were used, while geochemical rock studies were excluded except for TOC content.  
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Figure 6. Train/test accuracy plots ranked by best average test accuracy. Left: Logistic Regression. Center: 

Support Vector Classifier (SVC). Right: K-Nearest Neighbors. a) Trained with all features (xrd+geo): All 

models exhibit moderate overfitting, as indicated by high training accuracy and low test accuracy. Logistic 

Regression shows the worst performance. b) Trained with ANOVA selected features (best_anova): There is a 

significant improvement in the Logistic and Support Vector Classifier with consistent train/test accuracy 

values over 0.96, while KNN shows a slight improvement. Error bars represent 95% Confidence interval. 

 

During EDA all explored dimension reduction techniques proved to be useful to visualize 

distribution of labeled and unlabeled samples in feature space (Fig. 4). This is extremely 

useful to design a cost-effective analytical approach over remaining (TOC) unlabeled 

samples, to allow a uniform TOC sampling across feature space. Despite having only a 

limited number of labeled samples (approximately 30% of the dataset), spatial clustering 

of high TOC values was evident across all reduced-dimensionality scenarios. 
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A major difference was observed in the spatial discrimination of different sections. PCA 

shows a superposition of all three sections, particularly in the PG and IG sections. T-SNE 

clearly distinguished the PA section as a completely isolated cluster, while the PG and IG 

sections show greater contrast, with minor overlap in high TOC values within PG. UMAP 

provides the best sectional contrast: IG is isolated in the upper-left corner, while PG and IG 

occupy a broader area in the lower-left, with minimal overlap between their coverages. 

However, UMAP fails to display intra-section variability, especially after applying feature 

selection. Overall, T-SNE provides the best results in visualizing both inter- and intra-

section variability, making it the preferred dimensionality reduction technique for 

visualizing feature selection and modeling results. This result is highly promising for 

successful modeling, as it demonstrates the existence of a nonlinear mapping in which the 

sections exhibit non-overlapping coverage. 

Feature ranking by ANOVA F-Score was key in successfully identifying features that are 

strongly related to high TOC content. Silhouette index allowed to monitor the impact of 

additive feature selection on the spatial isolation of the high TOC samples helping to 

develop visual criteria to set the number of selected features (Fig. 5a). Although not 

included in this work, Random Forest and LinearSVC were also evaluated for feature 

importance, showing strong agreement on the top three features. However, their Silhouette 

performance was inferior. Figure 5b shows how reduced dimensionality from 13 to 4 did 

not mitigate the discrimination of the High TOC cluster and drastically improved its 

density. 

With only 29 samples available for TOC analysis compared to 13 features, modeling and 

cross-validation are highly challenging. Dimensionality reduction through feature selection 

is essential for building a robust, generalizable model. Leave-One-Out cross-validation was 

used to estimate generalization accuracy but required extensive training iterations. 

Bayesian Search Optimization replaced exhaustive Grid Search, reducing training time. 
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Figure 7. Best Train and Test accuracies. Left: models trained with full dataset (xrd+geo). Right: ANOVA 

selected features (best_anova). Error bars represent 95% Confidence intervals. Modeling performance in the 

test set is improved in the feature selection scenario. 

 

Accuracy curves (Fig. 6a) for the full feature set (xrd+geo) reveal moderate overfitting, 

with high training accuracy and test accuracies below 0.9, indicating poor generalization, 

particularly for Logistic Regression. In the reduced dimension space (Fig. 6B), both Logistic 

Regression and Support Vector Classifier achieved consistent train/test accuracies above 

0.96, significantly outperforming the full feature set. K-Nearest Neighbors remained 

overfitted due to the limited sample size. Figure 7 highlights substantial improvements in 

train/test accuracies across all models in the reduced dimension space. 

The predictions run in the complete dataset (labeled and unlabeled; Fig. 8) show that all 

models have almost identical results, despite having completely different optimization 

objectives and internal structure. We restate here that these results were obtained by 

retraining the model on the entire labeled dataset. The green-highlighted area represents 

the region of interest with a high probability of predicting samples with High TOC values. 

This outcome supports the feasibility of modeling, as suggested during the EDA phase. The 

predicted values (low or high TOC) and the probability of the prediction using the SVC 

model on the best_anova dataset are shown in Figure 9. 

Geological variables measured in the field significantly influence modeling and 

prediction (Fig. 4), particularly for the Río Mayer Formation. Among the XRD results, only 
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the contribution of interstratified Illite-Smectite (IS) is notable. Interestingly, clay 

mineralogy of the unit is dominated by Illite (I) or Chlorite (Cl), both with IS as companion 

(Richiano et al., 2015). Clearly, the combination of the IS content with one or more of the 

geological variables makes the difference for prediction of TOC content in this case study. 

 

 

Figure 8. Predictions over T-SNE reduced dimension feature space for models trained with the full labeled 

dataset. Full circles represent labeled samples, while empty circles are predictions, with circle size 

representing the predicted probability. Green color represents a highly probable High-TOC value, while Blue 

circles have a low probability of high TOC. Left: Logistic Regression, Center: Support Vector Classifier, Right: 

K-Nearest Neighbors. a) Training with all features (xrd+geo). Predictions show slight variability between 

Logistic Regression and Support Vector Classifier models, while K-Nearest Neighbors provides a wider 

coverage. b) Training with reduced feature space (best_anova). Prediction is consistent across all models. 
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Figure 9. Visualization in the sedimentological profiles the TOC values measured in the Río Mayer Formation 

(n=29), the prediction of low vs high TOC and the probability of the prediction using the SVC model with the 

best_anova dataset (105 samples). The blue dots are considered by the model as low_TOC samples, while the 

green dots are interpreted as high_TOC. 

 

Figures 8 and 9 clearly highlight the potential sweet spot within the Río Mayer 

Formation for unconventional targets. However, future modeling should incorporate 

additional factors, such as fracturing properties and areal distribution (e.g., Niu et al., 

2022). A more advanced machine learning workflow, known as ALICE, was developed by 
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Chevron for unconventional plays (Prochnow et al., 2022). Tognolli et al. (2024) 

highlighted KNN as an effective method for classification and prediction, particularly for 

facies associations, but emphasized the need for additional studies to address algorithm 

limitations. For outcrop modeling of the Río Mayer Formation, expanding the TOC analysis 

database and incorporating more sedimentary sections will be crucial for enabling regional 

interpretations in future work. 

 

CONCLUSIONS 

The initial mathematical characterization of the main Lower Cretaceous back shale 

outcrops in southern Patagonia highlights several key findings. At the Exploratory Data 

Analysis (EDA) the dimensional reduction techniques revealed continuous regions in 

feature space with similar TOC values, showing the potential of the dataset to be modeled. 

The PCA, T-SNE, and UMAP methods progressively improved section differentiation, with 

UMAP delivering the best results, indicating distinct feature space fingerprints for different 

sections. T-SNE excelled in visualizing both inter- and intra-section variability. The ANOVA 

F-Score effectively ranked features associated with high TOC content, while the silhouette 

index identified the optimal number of features. For the Dimensionality Reduction the 

previous feature selection was critical for building robust, generalizable models, as 

evidenced by LOO cross-validation results. Logistic Regression was the most sensitive to 

high dimensionality. Finally, the Model Predictions across the dataset were consistent 

among models. While K-Nearest Neighbors struggled with generalization in reduced 

dimension space, its predictions aligned with other models, suggesting potential 

improvement with more samples. SVC emerged as the most robust method.   
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