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Abstract: The purpose of this study was to determine the chemical and mineralogical
composition of suspended sediments from the Acre River, located in the Purus Basin,
upper Amazon basin, a region associated with the Fitzcarrald Arch. The elemental and
mineralogical compositions of the sediments were assessed by using mass and atomic
spectroscopy, and X-ray diffraction. A total of 46 samples were collected between 2008
and 2011 from four sites in the study area during wet and dry seasons. The suspended
sediments contained feldspar, kaolinite, illite and quartz as well as the elements Hg, Zn,
V, Ti, Si, Pb, Ni, Na, Mn, Mg, K, Fe, Cu, Cr, Cd, Ca, Al, S, and P in different proportions
that were associated with the various weathering reactions linked to physical, chemical
and biological processes in the region. The obtained results represent the first set of values
and relationships regarding the mineralogy and chemical identification of the suspended
sediments in the Acre River and can be used as areference for the geochemical characteristics
of the Purus Basin. Such regional studies will become increasingly necessary to observe
the impacts of climate change and human activities on the suspended sediment load and

composition of the Amazon River.
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INTRODUCTION

The Amazon River flows from the Andean
Mountains to the Atlantic Ocean. The Amazon
rainforest is the largest hydrographic basin in
the world and has been described in terms of its
dimension, biodiversity, floods, droughts, rainfall
variability (Villar et al., 2009) and projected climate
change (Chen et al., 2010; Fekete et al., 2010;
Salazar and Nobre, 2010). Suspended sediment
(SS) composition and flux (Bouchez et al., 2011),
as well as water quality are highly important for
ecological equilibrium (Berry et al., 2003), which
involves aquatic, terrestrial, atmospheric, oceanic
and estuarine interactions.

The drainage area of the Amazon basin is 6.4:106
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km? (Filho, 2005), and that of the Purus basin is
370,000 km? (Paiva and Collischonn, 2012). The
Purus River begins in Peru at an altitude of 400 —
500 m a.s.l. and runs for 3,300 km with a mean
water discharge of 10,499 m? s1 (ANA, 2011). The
drainage area of the Acre River basin covers 35,000
km?, and its discharge varies between 30 and 1,200
m3 s,

The Acre River basin is affected by forest fires,
logging, agriculture and cattle production, which
are the principal branches of the local economy. The
annual average rainfall in the region is 1,956 + 223
mm, according to 1971 — 2000 climatology (Duarte,
2006). The climate of the Amazon is characterized
by the occurrence of two principal meteorological

systems: the Intertropical Convergence Zone (ITCZ)
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Figure 1. Map of the Amazon basin showing the Fitzcarrald Arch, Solimdes (Jurud, Purus) and Madeira basins. Inset: Acre River
basin is shown in detail. B, X, P, R refers to the sampling location: Brasileia (B, 11°1.4’ S; 68°44.0’ W), Xapuri (X, 10°38.9” S;
68°30.4> W), Rio Branco (R, 9°58.7” S; 67°48.4 W) and Porto Acre (P, 9°34.5” S; 67°31.9° W).

and the South Atlantic Convergence Zone (SACZ),
which are modulated by the natural inter-annual
variability related to El Nifio and La Nifia (Pizarro
and Montecinos, 2004; Marengo, 2008; Chiessi et al.,
2009; Jury, 2009; Meehl et al., 2009).
Townsend-Small et al. (2008) attributed the
Andean sediment loads (particularly those of
organic sediments) to episodic events of heavy
rainfall or storms. The mechanical erosion rate and
sediment fluxes due to weathering are related to
precipitation, runoff, temperature, winds, humidity,
basin morphology and other climatic and physical
influences (Hurtrez et al., 1999; Gartner et al., 2008;
Zoccatelli et al., 2011; Govin et al., 2012). Persson
(2008) confirmed that as a general rule, sediment
samples increase in roundness, sphericity and
quartz content downstream from the Andes.
Elements such as Si, Mg, Fe, Al, Ca, Ti, and K are
found in river bed and in the suspended sediment in
different proportions (Mcdonough, 2000; Govin et al.,
2012), depending on geographical distribution and
redistribution factors, such as geological formations,
parental rocks, mineralogy, soils, topography, land
use, land cover, climate and climate change (Zhang
et al., 1999; Liu et al., 2007; Yoshikawa et al., 2008;

Wang et al., 2011). Biomass burning, deforestation
and fertilization produce materials entering the river
system and contributing to the composition of the
suspended sediment (Zhang et al., 1999; Druffel
et al., 2005; Figueiredo et al., 2010). In the upper
Amazon basin and particularly in the Madeira basin,
gold-mining operations release large quantities of Hg
into the atmosphere, water and soils (Diaz, 2000;
Maurice-Bourgoin et al., 2000; Fillion et al., 2006).
Furthermore, the transport of particulate matter via
rivers could be altered by dam constructions in the
Amazon basin (Kemenes et al., 2012).

The Acre River originates in Peru, then delimits
Peru, Bolivia and Brazil and runs through the State of
Acre to join the Purus River, which is the main river
that drains the Fitzcarrald Arch (Fig. 1). Riverbank-
erosion processes, transport and deposition of
sediment in the floodplains and sediment re-
entrance in the river flux play fundamental roles
in the geochemistry of suspended matter due to
the structural dynamics of the region. According to
Guyot et al. (2007), most of the suspended sediment
originates in the Andes Mountains and crosses the
Amazon floodplains before reaching the Atlantic
Ocean. The geological formation of the Purus
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basin corresponds to the Cenozoic Solimoes (sub-
Andean trough and Andean foreland in Central
Amazon). Thus, in this region, the mineralogical
and chemical composition of the SS should have
common characteristics. The SS particularities are
better established for Solimdes and Madeira Rivers
than for the Purus River; therefore, the objective
of the present paper was to determine the SS
load, seasonality and, mineralogical and chemical
composition of the Acre River (Purus basin) as well
as its regional connection.

MATERIALS AND METHODS

The study area comprises the Acre River basin
(part of the Purus basin, Fitzcarrald Arch), bordered
by the Andean Mountains and the Jurué, Solimbes
and Madeira Rivers (Fig. 1). The white waters of
the Amazon River begin in the elevated parts of the
Fitzcarrald Arch, initiating the erosion processes
and high sediment load that muddies the rivers.
The study area contains the following classes of
soil: cambisols, vertisols, luvisols, acrisols, ferralsols
and plinthosols (Amaral, 2003; EMBRAPA, 2006;
FAO, 2007). The sampling procedures have been
previously described (WMO, 1994). Surface water
samples were collected during the wet (rainy) and dry
seasons from four sampling sites (Fig. 1): Brasileia,
Xapuri, Rio Branco and Porto Acre. The sampling
points were located in a well-mixed reach of stream
whose width, depth and velocity ranged from 100 to
200 m, 2 to 12 m, and 0.5 to 1.8 m s, respectively.
Samples were collected with 1-L plastic bottles that
were immersed 15 to 30 cm under the water surface.
Depth-profiling of SS was not measured. A total of
46 samples were obtained: 25 in the wet season and
21 in the dry season. The sediment yield QS (mega
tons per year) was calculated using the following
formula:

QS Mty?) =SS (g1") R (Gm®y™!) (1)

where: SS is suspended sediment concentration
(grams per liter) and R is the integral water discharge
(giga cubic meters per year).

The suspended sediment in the river water was
dried (50 — 60°C) for approximately 15 h. Next,
the material was homogenized and weighed. The
sediments were digested by adding 2.5 mL HNO,,
heating for 5 h at 80°C and centrifuging. The

Wet SS (mg L) Dry SS (mg L)

P 13/11/08 502 P 11/07/08 501
P 28/11/08 503 P 24/10/08 140
R 30/11/08 500 X 25/10/08 500
P 10/12/08 336 B 25/10/08 210
R 27/12/08 500 R 30/10/08 501
P 20/01/09 500 R 28/05/09 494
X 24/01/09 381 P 06/06/09 122
R 30/01/09 502 R 28/06/09 410
R 25/02/09 375 P 25/07/09 142
P 13/03/09 500 R 30/07/09 415
R 31/03/09 546 P 15/08/09 114
R 29/04/09 507 R 25/08/09 154
R 24/11/09 501 R 28/09/09 149
P 09/12/09 512 P 10/10/09 457
R 23/12/09 551 R 20/10/09 156
R 20/01/10 161 R 20/05/10 77
R 23/02/10 226 R 20/06/10 502
R 22/03/10 437 R 20/07/10 102
R 20/04/10 75 R 20/08/10 92
R 20/11/10 502 R 20/09/10 35
R 20/12/10 500 R 20/10/10 336
R 20/01/11 325

P 24/01/11 354

R 20/02/11 287

R 20/03/11 227

Table 1. Suspended sediment concentration in the Acre River
in the dry and wet seasons between 2008 and 2011. B, R, P,
and X as in figure 1.

resultant solution was diluted 5 to 100 times for
elemental analysis (Tessier et al., 1979; Gioda et al.,
2006; Gioda et al., 2011). The chemical composition
of the samples was determined using inductively
coupled plasma mass spectroscopy (ICP-MS - Elan
6000, Perkin Elmer, USA) to measure the total Hg
level and using inductively coupled plasma optical
emission spectrometry (ICP-OES - Optima 4300 DV,
Perkin Elmer, USA) for the other elements. Hg was
measured as a total because this species is volatile,
and certain losses could have occurred between
sampling and analysis. For Ti, the acid digestion
with HNO, was inefficient, extracting approximately
5%. Therefore, for these elements (Hg and Ti), the
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detected concentrations may be underestimates. The
accuracies of the employed methods were evaluated
using spiked blanks of known metal concentration
and a standard reference material (SRM, MESS-1,
NRC Institute for National Measurement Standards).
The recovery efficiency ranged from 40% (Mn and
V) to 90 — 100% (Pb and Zn). The average recovery
for most of the metals was 70 — 80%. A calibration
check was performed after each set of 14 samples.
The detection limit ranged from 0.02 to 0.80 ng L.

The mineralogical composition of the samples
was analyzed using X-ray powder diffraction
(XRD - Diffractometer Ultima IV, Rigaku Americas
Corporation, USA). Qualitative analysis of the
samples was performed via continuous records (5°
< 260 < 80°, A20 = 0.05°) using Cu K radiation (A
1.540562 A) and a I(B Ni filter. The minerals were
identified by comparison of the XRD experimental
patterns with standards in the Mineralogy Database
(http://webmineral.com/) and the literature (Albers
et al., 2002).

RESULTS

The seasonal SS concentration values are shown
in table 1. The SS was significantly greater during
the wet season than in the dry season according to
the results of a t-test at the 0.05 significance level.
The seasonal behavior of SS concentration is not
uniform as shown by the distribution of values in
figure 2.

Chemical and mineralogical composition

The chemical composition of the suspended
sediment of the Acre River is shown in table 2. The
major elements were Fe, Al and Ca, with average
concentrations of 27,232 mg kg, 10,808 mg kg,
and 5,354 mg kg, respectively. In contrast, the
lowest concentrations were measured for Hg, Cd,
and Ti with values of 1.54 mg kg!, 1.91 mg kg'!, and
3.33 mg kg1, respectively. Other elements detected
in high concentrations were Mg, K, Mn, Si, P, and S.

Strong correlations among certain elements
suggest similar sources, as noted for P and S (r =
0.9), as well as for Ca and Mg (r = 0.9). Phosphorus
in SS indicates anthropogenic origin. Fertilizers are
a source of P to water courses through leaching and
runoff, especially for Al- and Fe-rich soils, which are
characteristic of the Purus Basin. Other elements
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Figure 2. Seasonality of SS concentration in the Acre River
from 2008 to 2011. Gray bars denote the dry season interval,
from May to October, when the lowest SS concentrations
were frequently observed.

also presented strong correlations: the Pb, V and
Ni levels were correlated (r = 0.8), and the levels
of V and Ni were also strongly correlated with Cr,
Cd, and Cu (r = 0.6 — 0.9). However, Hg showed no
correlations with these species. Fe, Al, Mg, and Si
are predominant in silicate minerals, but there was
no correlation among the concentration of these
elements in the SS samples, with the exception of
Mg and Al (r = 0.9).

For all the studied sites, the X-ray diffractograms
of the SS samples display characteristic peaks of
quartz, kaolinite, and illite, as illustrated in figure
3. Quartz, kaolinite and illite were previously found
in suspended sediment, in the Purus and Jurué
basins (Martinelli et al., 1993; Carvalho et al., 2005).
Minerals as feldspar, Na-plagioclase, Ca-plagioclase
and smectite-vermiculite were also found in the SS
in Amazonian rivers (Allard et al., 2002).

The ratio of X/Al (where X = Mg, Ca, Na and K)
denotes the weathering index as a function of Al/Si,
which exhibits the linear trend shown in figure 4,
where the slopes of the lines are close to zero. The
Pearson correlation coefficient indicates a strong
association of the Mg/Al and Ca/Al ratios with the
Al/Si and a weak association of the Na/Al and K/Al
ratios with the Al/Si. Bouchez et al. (2011) had been
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explained the dilution processes in a mineralogical
mixing with quartz and clay minerals, such as illite,
kaolinite, alkali-feldspar and others.

DISCUSSION

Seasonality and composition of suspended
sediment

The seasonal SS concentration in the Acre River
follows the annual behavior of rainfall and water
discharge. The maximum values ranges from 450 to
550 mg L1 during the wet season when the water
discharge ranges from 800 to 1200 m3 s!, and the
minimum values were measured during dry season,
when the water discharge ranges from 30 to 450 m3
s'l. The high water discharge induces erosion of
the river borders and soils and also promotes the
re-entrance of the floodplain sediments into the
river, increasing the SS load in the wet season. Lack
of uniformity in SS seasonality had been noticed
by Meade (1994) in relation to large rivers, but in
the case of the Acre River, it can be influenced by
anthropogenic movement of matter into the river
system due to suppression of the vegetation in
areas adjacent to the river (Machado, 2011). The
reported mean yearly R values of the Acre River in
Rio Branco and at the confluence with the Purus
River are 8.9 and 13.7 GmS3, respectively (Duarte,
2010). Using eq. (1), the QS in Rio Branco is 2.7 Mt
y'1, and at the confluence with Purus River, the QS
is 4.1 Mt y'1. The Purus River discharge is 10 — 15
times greater than that of the Acre River. According
to the proportionality between the sediment load
and discharge, the load of sediment carried by
the Purus River is approximately 25 — 40 Mt y'l.
Observations conducted at the mouth of the Amazon
River indicate a broad interval for estimated values
between 0.6 and 1.3 Gt y'! of sediment load (Filizola
et al., 2009; Villar et al., 2011). Erosion of rocks
containing quartz and clay minerals and weathering
of cambisols, vertisols, luvisols, acrisols, ferralsols,
and plinthosols, in conjunction with deforestation
and use of slash and burning to transform vegetation
into pasture for cattle and agriculture, as well as
water transport, are the sources of the chemical
composition and diversity of concentration of the
SS, characterizing the sediment particles in the
upper Amazon of the Acre River, Purus Basin.

The major elements present in the suspended
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Figure 3. X-ray diffractograms of the Acre River SS with
peaks of quartz (qtz), kaolinite (kln) and illite (ill). Identical
patterns were obtained for all the sampling sites.

sediment chemical concentration were Fe, Al, Ca,
Mg, K, Mn, Si, P, and S. In contrast, the lowest
concentrations were measured for Hg, Cd, and Ti.
The measured concentrations of Hg, Pb, Fe, S, and P
were significantly greater in the dry season than in
the wet season. The high concentrations of elements
in SS are evidence of severe weathering of Amazon
soils. Weathering processes follow deforestation
and burning with multiple responses. As referenced
by Lindgren and Roéttorp (2009) the influence of
deforestation disturbances on soil erosion and
leaching of substances are complex and dependent
on each specific site and factors such as soil
texture, topography, vegetation, land management
history, climate, atmosphere deposition, etc. Forest
dynamics in the Amazon show different influences
on chemical element mobilization, such as slash
and burn agriculture, intense rainfalls, forest to
pasture conversion, leaching and surface runoff
and erosion, elevated export of solids and solute,
volatilization of S, alteration in the P cycle, reduced
soil acidity and increased concentrations of Ca and
of the trace elements Cu, Pb, Hg, and Ni (Lindell,
2011). It has been observed that Hg does not have
an appreciable presence in the region (Mascarenhas
et al., 2004; Siqueira and Aprile, 2012). The Hg
concentration in the SS of the Acre River could be
a result of atmospheric deposition following the
open-air amalgamation step of gold mining through
which up to 170 t y'! of Hg vapor is released to the
Amazon atmosphere (Diaz, 2000). In addition, the
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Figure 4. a) Mg/Al, b) Ca/Al, ¢) Na/Al and d) K/Al vs. Al/Si in the Acre River basin during the wet and dry seasons. The Pearson
correlation coefficient, the intercept and slope of the linear trend lines are shown.

Hg is remobilized due to the cultural practices of
deforestation in the Amazon. Slashing and biomass
burning contribute to the atmospheric emission of
Hg estimated by Michelazzo et al. (2010) of 6.7 t y!
between 2000 and 2008 and by Roulet et al. (1999) of
between 6 and 9 t y! from burning of primary forest.

Acre River and downstream suspended sediment

Weathering processes were extensively described
by Bouchez et al. (2012), primarily in the context of
the sediments of large rivers in the Amazon basin,
by introducing a weathering index to measure the

effects of weathering reactions that affect the soils
and floodplains compared to reactions affecting
the primary rocks. These authors report that little
information is available to date on the potential
contribution of weathering during
riverine transport and transient storage to global
weathering fluxes and that weathering reactions
were responsible for
changes in sediments from the Solimées varzea
(floodplain). These changes occurred through the
loss of plagioclase, smectite and illite, the formation
of kaolinite and a downstream shift in the mineral
assemblage dominating the clay fraction of Amazon

reactions

downstream chemical
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SSAc (mg kg™)

SSAm (mg kg1)

Table 3. Acre River Suspended
Sediment (SSAc), and Solimoes,

SSAm/SSAc

Concentration SD Concentration SD Enrichment ratio Madeira and Amazon mainstreams
Na 90 49 7,955 1,830 38 SS (SSAm). Chemical mean
Me 2,59 492 8219 2271 3 concentration, standard deviation
and enrichment ratio.
Al 10,808 2,088 79,733 23,977 7
Si 265 355 301,394 45918 1,139
K 1,456 627 18,732 4660 13
Ca 5,354 971 8,068 2,818 1.5
Ti 3 3 4,799 1,531 1,441
Cr 13 2 68 22 5
Fe 27,232 4,596 42,769 11,565 1.6
Ni 20 4 31 8 1.6
Cu 22 7 29 16 1.4
Zn 64 31 129 47 2
SS from illite-chlorite to kaolinite-smectite. grain-size distribution of suspended sediment with
Comparison  between the SS chemical river depth, i.e. the sediment-transport dynamics

concentrations from the Solimodes, Madeira and
Amazon mainstreams (SSAm) (Bouchez et al., 2011)
and that from the present study (SSAc), concerning
an integrated size spectrum of particles, indicates
the significant enrichment of Si, Ti, and Na, the
moderate enrichment of K, Al, Cr, and Mg, and the
low enrichment of Zn, Fe, Ni, Ca, and Cu in sediments
in the course from Acre to Amazon mainstreams, as
shown in table 3.

The major Si enrichment occurs in coarse
sediments that are in deepest areas of the river. The
relatively moderate content of Al in the Acre River SS
isacharacteristic property of fine particles in samples.
Bouchez et al. (2011) conducted observations in river
profiles up to 25, 30 and 60 m in depth, different from
the Acre River depths between 2 and 12 m, where
only surface samples were collected. This difference
explains the high dispersion (SD) of values for the
SSAm measurements compared to that encountered
for the SSAc data. The relative enrichment in the
chemical concentration of SS and the prevalence of
coarse or fine particles in both of the compared areas
is also revealed from the corresponding Al/Si values:
between 1 and 160 for SSAc and between 0 and 0.5
for SSAm. For example, the concentration of Na in
coarse particles (SSAm) was 88 times greater than its
concentration in fine particles (SSAc); it was more
than one thousand times for Si and Ti; and less than
two times for Ca, Fe, Ni and Cu (Table 3). Apparently,
the Acre River does not show a clear chemical and

are essentially related to the movement of fine
particles in a turbulent flow where the SS particles
are almost randomly distributed. Figure 5 shows the
relationship of the chemical concentration of the
alkali metal Na and alkali-earth metal Ca with respect
to Al/Si ratio for the case of (SSAm) (Bouchez et al.,
2011) and this study. The relationship indicates
the distribution of elements in particles of various
grain sizes, prevailing in the mixing of coarse SS
(low Al/Si ratios) and fine surface SS (high Al/Si
ratios), respectively. In the Amazon River, the Al/Si
ratio points toward low values (silicon rich coarse
sediments) in bottom SS and high values (aluminum
rich fine sediments) in surface SS (Bouchez et al.,
2011). In the Acre River, no significant differences in
grain size and chemical composition were observed,
as evidenced by the nearly constant relationship of
the weathering index values X/Al as a function of the
Al/Si (Fig. 4).

Perspectives of suspended sediment modification

Amazon ecosystems are highly vulnerable to
extreme events of climate and human interventions.
Such impacts occur through deforestation, seasonal
changes in atmospheric composition, floods and
droughts. Moreover, the construction of highways
(Maldonado et al., 2012) and more than seventy dams
for hydropower generation in the Brazilian Amazon
(Kemenes et al., 2007; Burger, 2011; Kemenes et
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Figure 5. a) Downstream enrichment of Na concentration and b) of Ca concentration in SS. Comparison between SSAm from

Bouchez et al. (2011) and SSAc (this paper). Circles represent grain size and element concentration: blue for SSAc and orange

for SSAm.

al., 2011; Kemenes et al., 2012; Pyper, 2012) and in
the Andean Amazon (Finer and Jenkins, 2012) will
have environmental impacts such as the release of
significant amounts of methane and carbon dioxide
to the atmosphere, with implications for climate
change, natural cycles, soil loss, biodiversity loss
and disturbances of river system loads and transport
of sediments.

Influences on the suspended sediment load could
be intensified due to the projected climate changes
in Amazonia (Salazar et al., 2007), which predict a
loss of vegetation, a decrease in precipitation during
longer dry seasons and higher temperatures and,
as a consequence, additional droughts and fires. At
the same time, during the shorter wet seasons, the
rainfall is expected to intensify severe erosion events
in a landscape with poor vegetation coverage (Saxena
and Hildemann, 1996). These modifications could
increase the redistribution of nutrients, such as P,
and of contaminants, such as Hg and Pb, and increase
the significance of water-sediment interactions and
their influence on river water quality (Walling and
Kane, 1982). Situations such as extreme floods and
droughts in the Amazon (Collier and Webb, 2002)
are predicted as new climate behavior for the 21th
century.

CONCLUSION

The present study was developed in a portion of
the Purus Basin that is the least studied area in the
region. The seasonality of the suspended sediment

(SS) from the Acre River was determined. The SS
concentration of sediments was significantly greater
during the wet season than during the dry season.
In contrast, the concentrations of Hg, Pb, Fe, S,
and P in the SS were significantly greater during
the dry season than during the wet season. Quartz,
kaolinite and illite were observed in all the sampling
sites. The elements Zn, V, Ti, Si, Pb, Ni, Na, Mn,
Mg, K, Fe, Cu, Cr, Cd, Ca, Al, S, and P derive from
weathering reactions that affect the minerals and
soils that are characteristic of the Fitzcarrald Arch
geochemistry. A detailed chart of the geochemistry
of the SS provides evidence of the distribution of
element concentrations. Particles of various grain
sizes, are present in the mixing of coarse SS (low
Al/Si ratios) and fine SS (high Al/Si ratios), and a
downstream enrichment of chemical concentrations
was observed. It was assumed that Hg reaches the
region via atmospheric transport and deposition and
from gold mining in the Madeira basin. Erosion of
rocks and clay minerals, soil weathering, practice of
deforestation, use of slash and burning in agriculture,
as well as water transport determine the chemical
composition and diversity of concentrations of
suspended sediment in the Acre River in the Purus
Basin. The obtained results represent the first set of
values and relationships regarding the mineralogy
and chemical identification of the SS in the region
and can be used as a reference for future efforts
to add spatial and temporal information about the
hydrological and geochemical characteristics within
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the Purus Basin, to observe, for example, possible
impacts of climate change and human activities on
the SS load and composition of the Amazon River.
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